perm filename BNCH12.LSP[LSC,LSP] blob
sn#763174 filedate 1984-08-03 generic text, type T, neo UTF8
; [12] **** Yet another theorem-prover ****
; Rewrite rule base theorem-proving programs
; written by Bob Boyer.
(SETQ BASE 10. IBASE 10.)
(DECLARE (SPECIAL UNIFY-SUBST TEMP-TEMP))
(DEFUN ADD-LEMMA (TERM)
(COND ((AND (NOT (ATOM TERM))
(EQ (CAR TERM)
(QUOTE EQUAL))
(NOT (ATOM (CADR TERM))))
(PUTPROP (CAR (CADR TERM))
(CONS TERM (GET (CAR (CADR TERM))
(QUOTE LEMMAS)))
(QUOTE LEMMAS)))
(T (ERROR (QUOTE ADD-LEMMA-DID-NOT-LIKE-TERM)
TERM))))
(DEFUN ADD-LEMMA-LST (LST)
(COND ((NULL LST)
T)
(T (ADD-LEMMA (CAR LST))
(ADD-LEMMA-LST (CDR LST)))))
(DEFUN APPLY-SUBST (ALIST TERM)
(COND ((ATOM TERM)
(COND ((SETQ TEMP-TEMP (ASSQ TERM ALIST))
(CDR TEMP-TEMP))
(T TERM)))
(T (CONS (CAR TERM)
(APPLY-SUBST-LST ALIST (CDR TERM))))))
(DEFUN APPLY-SUBST-LST (ALIST LST)
(COND ((NULL LST)
NIL)
(T (CONS (APPLY-SUBST ALIST (CAR LST))
(APPLY-SUBST-LST ALIST (CDR LST))))))
(DEFUN FALSEP (X LST)
(OR (EQUAL X (QUOTE (F)))
(MEMBER X LST)))
(DEFUN ONE-WAY-UNIFY (TERM1 TERM2)
(PROGN (SETQ UNIFY-SUBST NIL)
(ONE-WAY-UNIFY1 TERM1 TERM2)))
(DEFUN ONE-WAY-UNIFY1 (TERM1 TERM2)
(COND ((ATOM TERM2)
(COND ((SETQ TEMP-TEMP (ASSQ TERM2 UNIFY-SUBST))
(EQUAL TERM1 (CDR TEMP-TEMP)))
(T (SETQ UNIFY-SUBST (CONS (CONS TERM2 TERM1)
UNIFY-SUBST))
T)))
((ATOM TERM1)
NIL)
((EQ (CAR TERM1)
(CAR TERM2))
(ONE-WAY-UNIFY1-LST (CDR TERM1)
(CDR TERM2)))
(T NIL)))
(DEFUN ONE-WAY-UNIFY1-LST (LST1 LST2)
(COND ((NULL LST1)
T)
((ONE-WAY-UNIFY1 (CAR LST1)
(CAR LST2))
(ONE-WAY-UNIFY1-LST (CDR LST1)
(CDR LST2)))
(T NIL)))
(DEFUN REWRITE (TERM)
(COND ((ATOM TERM)
TERM)
(T (REWRITE-WITH-LEMMAS (CONS (CAR TERM)
(REWRITE-ARGS (CDR TERM)))
(GET (CAR TERM)
(QUOTE LEMMAS))))))
(DEFUN REWRITE-ARGS (LST)
(COND ((NULL LST)
NIL)
(T (CONS (REWRITE (CAR LST))
(REWRITE-ARGS (CDR LST))))))
(DEFUN REWRITE-WITH-LEMMAS (TERM LST)
(COND ((NULL LST)
TERM)
((ONE-WAY-UNIFY TERM (CADR (CAR LST)))
(REWRITE (APPLY-SUBST UNIFY-SUBST (CADDR (CAR LST)))))
(T (REWRITE-WITH-LEMMAS TERM (CDR LST)))))
(DEFUN
SETUP NIL
(ADD-LEMMA-LST
(QUOTE ((EQUAL (COMPILE FORM)
(REVERSE (CODEGEN (OPTIMIZE FORM)
(NIL))))
(EQUAL (EQP X Y)
(EQUAL (FIX X)
(FIX Y)))
(EQUAL (GREATERP X Y)
(LESSP Y X))
(EQUAL (LESSEQP X Y)
(NOT (LESSP Y X)))
(EQUAL (GREATEREQP X Y)
(NOT (LESSP X Y)))
(EQUAL (BOOLEAN X)
(OR (EQUAL X (T))
(EQUAL X (F))))
(EQUAL (IFF X Y)
(AND (IMPLIES X Y)
(IMPLIES Y X)))
(EQUAL (EVEN1 X)
(IF (ZEROP X)
(T)
(ODD (SUB1 X))))
(EQUAL (COUNTPS- L PRED)
(COUNTPS-LOOP L PRED (ZERO)))
(EQUAL (FACT- I)
(FACT-LOOP I 1))
(EQUAL (REVERSE- X)
(REVERSE-LOOP X (NIL)))
(EQUAL (DIVIDES X Y)
(ZEROP (REMAINDER Y X)))
(EQUAL (ASSUME-TRUE VAR ALIST)
(CONS (CONS VAR (T))
ALIST))
(EQUAL (ASSUME-FALSE VAR ALIST)
(CONS (CONS VAR (F))
ALIST))
(EQUAL (TAUTOLOGY-CHECKER X)
(TAUTOLOGYP (NORMALIZE X)
(NIL)))
(EQUAL (FALSIFY X)
(FALSIFY1 (NORMALIZE X)
(NIL)))
(EQUAL (PRIME X)
(AND (NOT (ZEROP X))
(NOT (EQUAL X (ADD1 (ZERO))))
(PRIME1 X (SUB1 X))))
(EQUAL (AND P Q)
(IF P (IF Q (T)
(F))
(F)))
(EQUAL (OR P Q)
(IF P (T)
(IF Q (T)
(F))
(F)))
(EQUAL (NOT P)
(IF P (F)
(T)))
(EQUAL (IMPLIES P Q)
(IF P (IF Q (T)
(F))
(T)))
(EQUAL (FIX X)
(IF (NUMBERP X)
X
(ZERO)))
(EQUAL (IF (IF A B C)
D E)
(IF A (IF B D E)
(IF C D E)))
(EQUAL (ZEROP X)
(OR (EQUAL X (ZERO))
(NOT (NUMBERP X))))
(EQUAL (PLUS (PLUS X Y)
Z)
(PLUS X (PLUS Y Z)))
(EQUAL (EQUAL (PLUS A B)
(ZERO))
(AND (ZEROP A)
(ZEROP B)))
(EQUAL (DIFFERENCE X X)
(ZERO))
(EQUAL (EQUAL (PLUS A B)
(PLUS A C))
(EQUAL (FIX B)
(FIX C)))
(EQUAL (EQUAL (ZERO)
(DIFFERENCE X Y))
(NOT (LESSP Y X)))
(EQUAL (EQUAL X (DIFFERENCE X Y))
(AND (NUMBERP X)
(OR (EQUAL X (ZERO))
(ZEROP Y))))
(EQUAL (MEANING (PLUS-TREE (APPEND X Y))
A)
(PLUS (MEANING (PLUS-TREE X)
A)
(MEANING (PLUS-TREE Y)
A)))
(EQUAL (MEANING (PLUS-TREE (PLUS-FRINGE X))
A)
(FIX (MEANING X A)))
(EQUAL (APPEND (APPEND X Y)
Z)
(APPEND X (APPEND Y Z)))
(EQUAL (REVERSE (APPEND A B))
(APPEND (REVERSE B)
(REVERSE A)))
(EQUAL (TIMES X (PLUS Y Z))
(PLUS (TIMES X Y)
(TIMES X Z)))
(EQUAL (TIMES (TIMES X Y)
Z)
(TIMES X (TIMES Y Z)))
(EQUAL (EQUAL (TIMES X Y)
(ZERO))
(OR (ZEROP X)
(ZEROP Y)))
(EQUAL (EXEC (APPEND X Y)
PDS ENVRN)
(EXEC Y (EXEC X PDS ENVRN)
ENVRN))
(EQUAL (MC-FLATTEN X Y)
(APPEND (FLATTEN X)
Y))
(EQUAL (MEMBER X (APPEND A B))
(OR (MEMBER X A)
(MEMBER X B)))
(EQUAL (MEMBER X (REVERSE Y))
(MEMBER X Y))
(EQUAL (LENGTH (REVERSE X))
(LENGTH X))
(EQUAL (MEMBER A (INTERSECT B C))
(AND (MEMBER A B)
(MEMBER A C)))
(EQUAL (NTH (ZERO)
I)
(ZERO))
(EQUAL (EXP I (PLUS J K))
(TIMES (EXP I J)
(EXP I K)))
(EQUAL (EXP I (TIMES J K))
(EXP (EXP I J)
K))
(EQUAL (REVERSE-LOOP X Y)
(APPEND (REVERSE X)
Y))
(EQUAL (REVERSE-LOOP X (NIL))
(REVERSE X))
(EQUAL (COUNT-LIST Z (SORT-LP X Y))
(PLUS (COUNT-LIST Z X)
(COUNT-LIST Z Y)))
(EQUAL (EQUAL (APPEND A B)
(APPEND A C))
(EQUAL B C))
(EQUAL (PLUS (REMAINDER X Y)
(TIMES Y (QUOTIENT X Y)))
(FIX X))
(EQUAL (POWER-EVAL (BIG-PLUS1 L I BASE)
BASE)
(PLUS (POWER-EVAL L BASE)
I))
(EQUAL (POWER-EVAL (BIG-PLUS X Y I BASE)
BASE)
(PLUS I (PLUS (POWER-EVAL X BASE)
(POWER-EVAL Y BASE))))
(EQUAL (REMAINDER Y 1)
(ZERO))
(EQUAL (LESSP (REMAINDER X Y)
Y)
(NOT (ZEROP Y)))
(EQUAL (REMAINDER X X)
(ZERO))
(EQUAL (LESSP (QUOTIENT I J)
I)
(AND (NOT (ZEROP I))
(OR (ZEROP J)
(NOT (EQUAL J 1)))))
(EQUAL (LESSP (REMAINDER X Y)
X)
(AND (NOT (ZEROP Y))
(NOT (ZEROP X))
(NOT (LESSP X Y))))
(EQUAL (POWER-EVAL (POWER-REP I BASE)
BASE)
(FIX I))
(EQUAL (POWER-EVAL (BIG-PLUS (POWER-REP I BASE)
(POWER-REP J BASE)
(ZERO)
BASE)
BASE)
(PLUS I J))
(EQUAL (GCD X Y)
(GCD Y X))
(EQUAL (NTH (APPEND A B)
I)
(APPEND (NTH A I)
(NTH B (DIFFERENCE I (LENGTH A)))))
(EQUAL (DIFFERENCE (PLUS X Y)
X)
(FIX Y))
(EQUAL (DIFFERENCE (PLUS Y X)
X)
(FIX Y))
(EQUAL (DIFFERENCE (PLUS X Y)
(PLUS X Z))
(DIFFERENCE Y Z))
(EQUAL (TIMES X (DIFFERENCE C W))
(DIFFERENCE (TIMES C X)
(TIMES W X)))
(EQUAL (REMAINDER (TIMES X Z)
Z)
(ZERO))
(EQUAL (DIFFERENCE (PLUS B (PLUS A C))
A)
(PLUS B C))
(EQUAL (DIFFERENCE (ADD1 (PLUS Y Z))
Z)
(ADD1 Y))
(EQUAL (LESSP (PLUS X Y)
(PLUS X Z))
(LESSP Y Z))
(EQUAL (LESSP (TIMES X Z)
(TIMES Y Z))
(AND (NOT (ZEROP Z))
(LESSP X Y)))
(EQUAL (LESSP Y (PLUS X Y))
(NOT (ZEROP X)))
(EQUAL (GCD (TIMES X Z)
(TIMES Y Z))
(TIMES Z (GCD X Y)))
(EQUAL (VALUE (NORMALIZE X)
A)
(VALUE X A))
(EQUAL (EQUAL (FLATTEN X)
(CONS Y (NIL)))
(AND (NLISTP X)
(EQUAL X Y)))
(EQUAL (LISTP (GOPHER X))
(LISTP X))
(EQUAL (SAMEFRINGE X Y)
(EQUAL (FLATTEN X)
(FLATTEN Y)))
(EQUAL (EQUAL (GREATEST-FACTOR X Y)
(ZERO))
(AND (OR (ZEROP Y)
(EQUAL Y 1))
(EQUAL X (ZERO))))
(EQUAL (EQUAL (GREATEST-FACTOR X Y)
1)
(EQUAL X 1))
(EQUAL (NUMBERP (GREATEST-FACTOR X Y))
(NOT (AND (OR (ZEROP Y)
(EQUAL Y 1))
(NOT (NUMBERP X)))))
(EQUAL (TIMES-LIST (APPEND X Y))
(TIMES (TIMES-LIST X)
(TIMES-LIST Y)))
(EQUAL (PRIME-LIST (APPEND X Y))
(AND (PRIME-LIST X)
(PRIME-LIST Y)))
(EQUAL (EQUAL Z (TIMES W Z))
(AND (NUMBERP Z)
(OR (EQUAL Z (ZERO))
(EQUAL W 1))))
(EQUAL (GREATEREQPR X Y)
(NOT (LESSP X Y)))
(EQUAL (EQUAL X (TIMES X Y))
(OR (EQUAL X (ZERO))
(AND (NUMBERP X)
(EQUAL Y 1))))
(EQUAL (REMAINDER (TIMES Y X)
Y)
(ZERO))
(EQUAL (EQUAL (TIMES A B)
1)
(AND (NOT (EQUAL A (ZERO)))
(NOT (EQUAL B (ZERO)))
(NUMBERP A)
(NUMBERP B)
(EQUAL (SUB1 A)
(ZERO))
(EQUAL (SUB1 B)
(ZERO))))
(EQUAL (LESSP (LENGTH (DELETE X L))
(LENGTH L))
(MEMBER X L))
(EQUAL (SORT2 (DELETE X L))
(DELETE X (SORT2 L)))
(EQUAL (DSORT X)
(SORT2 X))
(EQUAL (LENGTH (CONS X1
(CONS X2
(CONS X3 (CONS X4
(CONS X5
(CONS X6 X7)))))))
(PLUS 6 (LENGTH X7)))
(EQUAL (DIFFERENCE (ADD1 (ADD1 X))
2)
(FIX X))
(EQUAL (QUOTIENT (PLUS X (PLUS X Y))
2)
(PLUS X (QUOTIENT Y 2)))
(EQUAL (SIGMA (ZERO)
I)
(QUOTIENT (TIMES I (ADD1 I))
2))
(EQUAL (PLUS X (ADD1 Y))
(IF (NUMBERP Y)
(ADD1 (PLUS X Y))
(ADD1 X)))
(EQUAL (EQUAL (DIFFERENCE X Y)
(DIFFERENCE Z Y))
(IF (LESSP X Y)
(NOT (LESSP Y Z))
(IF (LESSP Z Y)
(NOT (LESSP Y X))
(EQUAL (FIX X)
(FIX Z)))))
(EQUAL (MEANING (PLUS-TREE (DELETE X Y))
A)
(IF (MEMBER X Y)
(DIFFERENCE (MEANING (PLUS-TREE Y)
A)
(MEANING X A))
(MEANING (PLUS-TREE Y)
A)))
(EQUAL (TIMES X (ADD1 Y))
(IF (NUMBERP Y)
(PLUS X (TIMES X Y))
(FIX X)))
(EQUAL (NTH (NIL)
I)
(IF (ZEROP I)
(NIL)
(ZERO)))
(EQUAL (LAST (APPEND A B))
(IF (LISTP B)
(LAST B)
(IF (LISTP A)
(CONS (CAR (LAST A))
B)
B)))
(EQUAL (EQUAL (LESSP X Y)
Z)
(IF (LESSP X Y)
(EQUAL T Z)
(EQUAL F Z)))
(EQUAL (ASSIGNMENT X (APPEND A B))
(IF (ASSIGNEDP X A)
(ASSIGNMENT X A)
(ASSIGNMENT X B)))
(EQUAL (CAR (GOPHER X))
(IF (LISTP X)
(CAR (FLATTEN X))
(ZERO)))
(EQUAL (FLATTEN (CDR (GOPHER X)))
(IF (LISTP X)
(CDR (FLATTEN X))
(CONS (ZERO)
(NIL))))
(EQUAL (QUOTIENT (TIMES Y X)
Y)
(IF (ZEROP Y)
(ZERO)
(FIX X)))
(EQUAL (GET J (SET I VAL MEM))
(IF (EQP J I)
VAL
(GET J MEM)))))))
(DEFUN TAUTOLOGYP (X TRUE-LST FALSE-LST)
(COND ((TRUEP X TRUE-LST)
T)
((FALSEP X FALSE-LST)
NIL)
((ATOM X)
NIL)
((EQ (CAR X)
(QUOTE IF))
(COND ((TRUEP (CADR X)
TRUE-LST)
(TAUTOLOGYP (CADDR X)
TRUE-LST FALSE-LST))
((FALSEP (CADR X)
FALSE-LST)
(TAUTOLOGYP (CADDDR X)
TRUE-LST FALSE-LST))
(T (AND (TAUTOLOGYP (CADDR X)
(CONS (CADR X)
TRUE-LST)
FALSE-LST)
(TAUTOLOGYP (CADDDR X)
TRUE-LST
(CONS (CADR X)
FALSE-LST))))))
(T NIL)))
(DEFUN TAUTP (X)
(TAUTOLOGYP (REWRITE X)
NIL NIL))
(DEFUN TEST NIL
(PROG (ANS TERM)
(SETQ TERM
(APPLY-SUBST
(QUOTE ((X F (PLUS (PLUS A B)
(PLUS C (ZERO))))
(Y F (TIMES (TIMES A B)
(PLUS C D)))
(Z F (REVERSE (APPEND (APPEND A B)
(NIL))))
(U EQUAL (PLUS A B)
(DIFFERENCE X Y))
(W LESSP (REMAINDER A B)
(MEMBER A (LENGTH B)))))
(QUOTE (IMPLIES (AND (IMPLIES X Y)
(AND (IMPLIES Y Z)
(AND (IMPLIES Z U)
(IMPLIES U W))))
(IMPLIES X W)))))
(SETQ ANS (TAUTP TERM)) ))
(DEFUN TRANS-OF-IMPLIES (N)
(LIST (QUOTE IMPLIES)
(TRANS-OF-IMPLIES1 N)
(LIST (QUOTE IMPLIES)
0 N)))
(DEFUN TRANS-OF-IMPLIES1 (N)
(COND ((EQUAL N 1)
(LIST (QUOTE IMPLIES)
0 1))
(T (LIST (QUOTE AND)
(LIST (QUOTE IMPLIES)
(SUB1 N)
N)
(TRANS-OF-IMPLIES1 (SUB1 N))))))
(DEFUN TRUEP (X LST)
(OR (EQUAL X (QUOTE (T)))
(MEMBER X LST)))
; Initialization
(SETUP)
; Confirm that (TEST) must return T.
; [12-1:] Measure the following execution time.
(DEFMACRO BENCHMARK (N &REST BODY)
`(LET (TIME1 TIME2 TIME3 GC RUN)
(PRINT ',BODY)
(GC)
(SSTATUS GCTIME 0)
(SETQ TIME1 (RUNTIME))
(DO ((I 1 (1+ I)))
((> I ,N))
,@BODY )
(SETQ TIME2 (RUNTIME))
(DO ((I 1 (1+ I))) ((> I ,N)))
(SETQ TIME3 (RUNTIME))
(SETQ GC (STATUS GCTIME))
(SETQ RUN (DIFFERENCE (PLUS TIME2 TIME2) TIME1 TIME3))
(TERPRI)
(PRINC "Total = ")
(PRINC RUN)
(PRINC "us, Runtime = ")
(PRINC (DIFFERENCE RUN GC))
(PRINC "us, GC = ")
(PRINC GC)
(PRINC "us, for ")
(PRINC ,N)
(PRINC " iterations.")
(TERPRI)
))
(DEFUN BENCH121 (ITER) (BENCHMARK ITER (TEST)))
; If macro is not avaiable, use instead the followings:
'("*** Please this line and the last line. ***"
(DEFUN BENCH121 (ITER)
(PROG (TIME1 TIME2 TIME3 GC RUN N)
(GC)
(SSTATUS GCTIME 0)
(SETQ TIME1 (RUNTIME))
(SETQ N ITER)
L1 (TEST)
(COND ((GREATERP (SETQ N (SUB1 N)) 0) (GO L1)))
(SETQ TIME2 (RUNTIME))
(SETQ N ITER)
L2 (COND ((GREATERP (SETQ N (SUB1 N)) 0) (GO L2)))
(SETQ TIME3 (RUNTIME))
(SETQ GC (STATUS GCTIME))
(SETQ RUN (DIFFERENCE (PLUS TIME2 TIME2) TIME1 TIME3))
(TERPRI)
(PRINC "Total = ")
(PRINC RUN)
(PRINC "us, Runtime = ")
(PRINC (DIFFERENCE RUN GC))
(PRINC "us, GC = ")
(PRINC GC)
(PRINC "us, for ")
(PRINC ITER)
(PRINC " iterations.")
(TERPRI)
))
"*** Please kill this line. ***" )
; Now measure the benchmark.
; (BENCH121 1)
; ******** That's all ********